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1. Introduction

Intrahepatic cholangiocarcinoma (ICC) ranks as the 
second most prevalent primary liver cancer, following 
hepatocellular carcinoma (HCC). For individuals 
with resectable ICC, the prognosis post-resection is 
discouraging, with a 5-year survival rate of only 25-
35%. Notably, tumor recurrence accounts for the 
majority of deaths, contributing to 60-70% of cases 
(1-3). Consequently, precise prognostic assessment 
is of significant importance to guide personalized 
treatment strategies and improve the overall prognosis 
for ICC patients. The majority of clinical investigations 
concerning ICC rely on radiomic features to predict 
prognosis. However, it is a challenge to acquire radiomic 
features, and determining the region of interest (ROI) 
introduces subjectivity. As a result, these models 
are inherently intricate and hard to interpret (4,5). 

Consequently, these factors pose significant obstacles to 
the practical clinical application of such models.
	 Despite significant research advancements such as 
chemotherapy, targeted therapy, and immunotherapy, 
which have provided valuable scientific and clinical 
insights into the treatment of ICC (6-8), surgical 
resection remains the main potentially curative 
treatment. In the case of HCC, there has been frequent 
discussion about the difference in long-term prognosis 
between anatomic resection (AR) and non-anatomic 
resection (NAR) (9-11). However, in the context of ICC, 
the advantages of AR versus NAR remain uncertain (12-
14). It is worth noting that the number of patients with 
ICC combined with cholelithiasis is higher in Eastern 
countries compared with that in Western countries, and 
the specific surgical approach in such cases remains 
undetermined (15). In conventional clinical studies, 
conclusions are often drawn at the population level, but 
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The prognosis following radical surgery for intrahepatic cholangiocarcinoma (ICC) is poor, and 
optimal follow-up strategies remain unclear, with ongoing debates regarding anatomic resection (AR) 
versus non-anatomic resection (NAR). This study included 680 patients from five hospitals, comparing 
a combination of eight feature screening methods and 11 machine learning algorithms to predict 
prognosis and construct integrated models. These models were assessed using nested cross-validation 
and various datasets, benchmarked against TNM stage and performance status. Evaluation metrics 
such as area under the curve (AUC) were applied. Prognostic models incorporating screened features 
showed superior performance compared to unselected models, with AR emerging as a key variable. 
Treatment recommendation models for surgical approaches, including DeepSurv, neural network 
multitask logistic regression (N-MTLR), and Kernel support vector machine (SVM), indicated that 
N-MTLR's recommendations were associated with survival benefits. Additionally, some patients 
identified as suitable for NAR were within groups previously considered for AR. In conclusion, three 
robust clinical models were developed to predict ICC prognosis and optimize surgical decisions, 
improving patient outcomes and supporting shared decision-making for patients and surgeons.
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these conclusions may not necessarily benefit patients in 
real-world scenarios (16).
	 Artificial intelligence, particularly machine learning, 
exhibits undeniable advantages in addressing these 
issues. Machine learning has the capacity to enhance 
population-level evidence and facilitate the development 
of personalized treatment strategies for patients. 
However, only a few studies have compared various 
machine learning methods to construct high-performance 
predictive models for predicting recurrence and 
survival rates in ICC patients following radical surgery. 
Furthermore, there is a notable gap in the literature 
concerning personalized predictions for selecting surgical 
approaches in cases of ICC.
	 In the present study, multiple machine learning 
algorithms, dimensionality reduction algorithms, 
and integrated learning methods were employed to 
investigate models capable of predicting post-radical 
surgery prognosis for ICC. Additionally, these models 
were compared with those developed by the American 
Joint Committee on Cancer (AJCC) 8th edition 
staging system. Notably, in the model interpretation, 
AR significantly reduces the risk of recurrence and 
mortality. Therefore, multiple models were developed, 
including deep learning, to explore personalized surgical 
recommendation models to enhance patient prognosis. 
We encapsulate the algorithm as a program and upload 
it to GitHub. The decision-making procedure in these 
models was analyzed to gain valuable insights into the 
factors influencing the prognosis of ICC.

2. Patients and Methods

2.1. Patients

Data were gathered from five hospitals (Fujian 
provincial hospital 218 patients, First affiliated hospital 
of Fujian medical university 163 patients, Fujian medical 
university union hospital 117 patients, The second 
affiliated hospital, Fujian medical university 133 patients, 
Mindong hospital affiliated to Fujian medical university 
49 patients). To gather a comprehensive dataset, three 
hospitals in Fuzhou were used as the training-validation 
set, while the remaining data were used as the external 
test set. To ensure appropriate patient follow-up for at 
least 2 years, the collected data encompasses a period 
beginning from January 2021 to January 2023. Within 
this period, an event-free outcome was defined as no 
death in 2 years and no recurrence in 1 year.
	 The inclusion criteria for this study were as 
follows: i) confirmation of ICC through postoperative 
histopathology; ii) initial treatment was surgical resection 
(involving either AR or NAR); iii) patients with R0 
margins. Conversely, the exclusion criteria were as 
follows: i) patients with severe underlying diseases; ii) 
patients with pre-resection metastases; iii) patients who 
passed away within 30 days of surgery; iv) patients who 

died to causes other than disease under investigation. An 
overview of the study workflow is depicted in Figure 1.

2.2. Definition of anatomic resection

AR was defined as the complete removal of the Couinaud 
segment, which included procedures like segmental 
hepatectomy, lobectomy, or hemihepatectomy. On the 
other hand, NAR was defined as the partial removal of 
portal tributaries associated with the affected segment. 
This classification includes procedures involving partial 
resection and tumor enucleation (17,18).

2.3. Development and validation of models

Following data preprocessing, 11 machine learning 
algorithms were applied to each of the 8 feature 
selections to predict recurrence and mortality in ICC. 
Subsequently, the top three models with the highest Area 
Under the Curve (AUC) for each feature were selected 
to explore the integrated model. The single model with 
the highest AUC, the integrated model, and the TNM-
based model were evaluated through cross-validation 
and their performance on the external validation dataset. 
In this regard, the receiver-operator characteristic (ROC) 
curve, AUC, and decision curve analysis (DCA) were 
employed as indicators. The integrated model was 
selected when it outperformed other models in various 
aspects. Conversely, when a single algorithm exhibited 
superior performance and high AUC, it was selected as 
the ultimate model. Furthermore, for each feature set, 
the model with the highest AUC was selected for model 
interpretation and variable importance ranking. In the 
present study, AR was selected as an important parameter 
in all features for predicting recurrence and mortality. The 
analysis revealed that AR correlates with the probability 
of recurrence and mortality in ICC patients. To address 
the risk of overfitting in deep learning, the prior training-
validation set was utilized for the training set, and the 
external validation set was utilized for the validation set 
in the surgical recommendation model. After excluding 
intraoperative and postoperative variables, the variables 
jointly selected by 8 feature selections were incorporated 
into the prediction models for surgical modality. The 
models were achieved using DeepSurv (19), neural 
network multitask logistic regression (N-MTLR) (20), 
and Kernel support vector model (SVM) as the base 
models. Hazard ratio (HR), median overall survival (OS), 
and significance were determined through log-rank tests 
for eligible recommended treatments. Subsequently, 
the appropriate recommended treatment model was 
employed for individual predictions, and the respective 
eligible populations for AR and NAR were summarized 
for personalized forecasts. The calculation of HR was 
modified utilizing the inverse probability of treatment 
weighting (IPTW) method to balance potential selections 
between AR and NAR for patients (21).
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become a standard treatment, 672 patients (99%) in this 
study cohort received standard adjuvant chemotherapy, 
with only 8 patients not receiving chemotherapy. 
Given the high consistency of adjuvant chemotherapy 
in this study, chemotherapy was not included as an 
independent variable in the analysis. The features 
retained after each feature selection method are shown 
in Supplemental Table S1 (https://www.biosciencetrends.
com/action/getSupplementalData.php?ID=227). The 
results obtained from incorporating machine learning 
algorithms and feature sets are shown in Figure 2. 
The presented heatmaps illustrate AUC for various 
combinations of machine learning algorithms and 
feature selection methods. Meanwhile, the nested cross-
validation approach was utilized to optimize model 
hyperparameters and evaluate models. Evaluations of the 
benchmark model, single models, and integrated model 
on the training-validation and external test datasets 
are presented in Figure 3, Supplemental Figure S1 and 
Table S2 (https://www.biosciencetrends.com/action/
getSupplementalData.php?ID=227). In the context of the 
recurrence and mortality prediction table, despite some 
overlap in the confidence intervals of the baseline model, 
the proposed model demonstrated superior performance 
(Table 2). More specifically, Figure 4 and Supplemental 
Figure S6-S7 (https://www.biosciencetrends.com/action/
getSupplementalData.php?ID=227) indicate that the 
integrated model exhibited enhanced consistency in both 
the calibration curve and DCA for both recurrence and 
mortality. While there were negligible deviations in the 
AUC for the recurrence model between the integrated 
and single models, the integrated model outperformed 

2.4. Statistics analysis

All analyses were carried out using Python 3.7 and R 
4.1.3. P < 0.05 was considered Statistically significant. 
Details of data preprocessing, modeling, and validation 
approaches are presented in Supplemental Data (https://
www.biosciencetrends.com/action/getSupplementalData.
php?ID=227).

3. Results

3.1. Patient characteristics

The study involved 680 patients with a median follow-
up of 932 days. The training-validation dataset consisted 
of data from 498 patients, and the data for the remaining 
182 patients were used as the external test dataset. Patient 
demographic and clinical parameters are summarized in 
Table 1, indicating the external test dataset had higher 
percentages of patients with hepatolithiasis (56.0% vs. 
53.8%) and TNM8 N1-stage (40.1% vs. 34.1%). On the 
other hand, some indicators were lower in the external 
test dataset in comparison with the training dataset, 
including TNM8 T1a-stage (11.5% vs. 15.1%) and AR 
(42.8% vs. 62.9%).

3.2. Model construction, validation, and interpretation 
for predicting prognosis

Following data preprocessing, 19 continuous and 7 
discrete features were used in machine learning. Since 
adjuvant chemotherapy after surgery for ICC has 

Figure 1. The overall flowchart of the study.
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Table 1. Demographic and clinical parameters for combined training-validation and test datasets (before imputation)

Parameter

Age, median (IQR), year
Sex, n (%)
     Female
     Male
BMI, median (IQR), Kg/m²
Missing, n (%)
Hepatolithiasis, n (%) (I)
     Yes
     No
Vascular invasion, n (%) (I)
     Yes
     No
Acute cholangitis, n (%)
     Yes
     No
TNM8 T stage, n (%)
     T1a
     T1b
     T2
     T3
     T4
TNM8 N stage, n (%)
     N1
     N0
Tumor distribution, n (%)
     Left hemiliver
     No
Maximum tumor diameter, median (IQR), cm
Anatomic resection, n (%)
     Yes
     No
Operative blood loss, median (IQR), mL
Missing, n (%)
Number of lymphatic dissection, n (%)
Neutrophil ratio, median (IQR), %
Missing, n (%)
Lymphocyte ratio, median (IQR), %
*Lymphocyte count, median (IQR), 10^9/L
Missing, n (%)
HB, mean(IQR), g/L
Missing, n (%)
*WBC count, median (IQR), 109/L
Missing, n (%)
*PLT count, median (IQR), 109/L
Missing, n (%)
CA199, median (IQR), U/mL
CA125, median (IQR), U/mL
Missing, n (%)
CEA, median (IQR), ng/mL
ALB, median (IQR), g/L
Missing, n (%)
DBIL, median (IQR), umol/L
IBIL, median (IQR), umol/L
ALP, median (IQR), U/L
Missing, n (%)
GGT, median (IQR), U/L
Missing, n (%)
Recurrence at 1 year, n (%)
Death at 2 years, n (%)
Median length of OS

Only features used in modeling are presented. Categorical data are summarized with median, percentages, and p-values pertaining to Fisher's exact 
test. Continuous data are summarized with median and IQR, and p-values pertain to the Wilcoxon rank sum test. Variables marked with (I) were 
based on preoperative imaging studies, while all other tumor-related variables were based on histopathological examination. Abbreviations: IQR, 
interquartile range; BMI, body mass index; CA199, carbohydrate antigen 199; CA125, carbohydrate antigen 125; CEA, carcinoembryonic antigen; 
HB, hemoglobin; WBC, white blood cell; PLT, platelet; ALB, albumin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALP, alkaline phosphatase; 
GGT, γ-glutamyl transpeptidase.

Combined Training & Validation Sets (n = 498)

       61 (54.0-67.0)

     234 (47.0)
     264 (53.0)
22.890 (20.9,24.4)
         7 (1.4)

     268 (53.8)
     230 (46.2)

     236 (47.4)
     263 (52.6)

     208 (41.8)
     290 (58.2)

       75 (15.1)
       60 (12.0)
       48 (9.6)
     252 (50.6)
       63 (12.7)

     170 (34.1)
     328 (67.2)

     257 (51.6)
     241 (48.3)
      5.0 (3.5,7.0)

     313 (62.9)
     185 (37.1)
     400 (200, 600)
       15 (3.0)
         5 (3.7)
    87.8 (84.2, 90.6)
       17 (3.4)
      6.3 (4.6, 8.5)
    0.80 (0.6, 1.1)
       17 (3.4)
     112 (97.0, 127.0)
       33 (6.6)
  12.77 (10.1, 15.1)
         9 (1.8)
     186 (139.0, 232.0)
         3 (0.6)
    80.4 (12.9,449.9)
    10.4 (4.1,28.2)
       78 (15.7)
2.9000 (1.4,5.4)
    29.9 (26.0,33.1)
         1 (0.2)
  9.450 (5.4,19.9)
11.500 (7.3,19.4)
  102.0 (70.0,212.5)
       49 (9.8)
     114 (76,201)
       29 (5.8)
     274 (55.0)
     249 (50.0)
739.50 (432.25, 1125.25)

p value

< 0.001
   0.17

   0.1

   0.66

   0.6

< 0.001

   0.19

   0.18

   0.19

   0.7
< 0.001

   0.81

   0.23
   0.12

   0.47
   0.14

   0.13

   0.2

   0.15

   0.61
   0.76

   0.67
   0.63

   0.77
   0.8
   0.32

   0.27

   0.081
   0.55
< 0.001

External Test Set (n = 182)

        64.5 (55.0-70.0)

           97 (53.2)
           85 (46.7)
  23.1800 (21.5,24.9)
             4 (2.1)

         102 (56.0)
           80 (44.0)

           90 (49.5)
           92 (50.5)

         113 (62.1)
           69 (37.9)

           21 (11.5)
           27 (14.8)
           27 (14.8)
           82 (45.1)
           25 (13.7)

           73 (40.1)
         109 (59.9)

           83 (45.6)
           99 (54.4)
        4.85 (3.4, 7.0)

           78 (42.8)
         104 (57.1)
         450 (200, 700)
             5 (2.7)
             5 (4.8)
        88.6 (84.9, 91.3)
             0 (0.0)
        6.60 (4.9, 8.8)
    0.8950 (0.6, 1.2)
             5 (2.7)
      108.0 (96.0 , 124.5)
           19 (10.4)
    13.350 (10.4, 15.8)
             0 (0.0)
     198. 0 (145.5, 240.5)
             7 (3.0)
        83.1 (14.9, 611.3)
          9.9 (3.8, 27.1)
           44 (24.2)
    3.0450 (1.5, 5.7)
        29.8 (26.0, 32.9)
             1 (0.5)
        9.40 (5.7, 23.0)
    11.450 (7.4, 18.0)
      115.0 (73.0, 228.5)
           10 (5.5)
120.9550 (73.0, 228.5)
             0 (0.0)
         114 (62.6)
           96 (52.7)
      831.5 (656.0, 1201.0)
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single models in terms of DCA and AUC for mortality. 
Considering the complexity and efficiency of the 
model implementation, random forest (RF) was used 
for recurrence, while the integrated model of SVM, 
RF, and K-nearest neighbors (KNN) was used for OS. 
When ranking the importance of both recurrence and 
mortality variables, AR held a more critical position. 
The models were further explained through the Shapley 
additive explanations (SHAP) analysis (Supplemental 
Figure S2 and S5, https://www.biosciencetrends.com/
action/getSupplementalData.php?ID=227). The analysis 
indicates that the presence of vascular invasion and 
hepatolithiasis in patients increases the mortality rate, 
while AR reduces the mortality rate. In SHAP analysis of 
recurrence and mortality, operative blood loss exhibited 
unstable patterns across various models. This parameter 
can either increase or decrease the outcome variable.

3.3. Construction of a surgical prediction model

Given the significant importance of AR in SHAP 
analysis and the results of previous feature screening, 
data on BMI, CA199, presence of vascular infiltrates 

and hepatolithiasis on imaging, and AR were included 
in the surgical approach recommendation models. 
Hyperparametric search results for each model are 
shown in Supplemental Table S3-S4, https://www.
biosciencetrends.com/action/getSupplementalData.
php?ID=227). The N-MTLR model recommended 
treatments that were associated with significantly higher 
survival in both the training and validation datasets (Table 
3 and Figure 4), with HR of 0.333 (95% CI: 0.262-
0.424; p < 0.001) in the training dataset and 0.561 (95% 
CI: 0.357-0.882; p = 0.012) in the validation dataset. To 
consider potential patient selection differences between 
AR and NAR, comparisons were conducted using 
IPTW, with higher weight assigned to underrepresented 
patients in each treatment group. IPTW results showed 
a performance similar to that of conventional HR. In the 
DeepSurv, N-MTLR model, and Kernel SVM models, 
AR was recommended for 571 (84.0%), 493 (72.5%), 
and 304 (44.7%) patients, respectively. Among patients 
with hepatolithiasis, AR was recommended for 199 
(53.8%) patients. Notably, in the subgroup of patients 
with both hepatolithiasis and vascular invasion, surgical 
recommendations based on the N-MTLR model also 

Figure 2. Heatmaps illustrating the performance of each machine learning algorithm (columns) with each feature reduction method (rows). 
(A) Heatmap for predicting recurrence; (B) Heatmap for predicting overall survival. Abbreviations: RFE, recursive feature elimination; BSS, best 
subset selection; E Net, elastic net; LASSO, least absolute shrinkage and selection operator; SA, simulated annealing; Univariate LR, univariate 
logistic regression; AdaBoost, adaptive boosting machine; GBDT, gradient boosting decision tree; XGboost, extreme gradient boosting machine; 
LightGBM, light gradient boosting machin; GLM, generalised linear model; SVM, support vector machine; DT, decision tree; LDA, linear 
discriminant analysis; NNET, neural network; RF, random forest; KNN, K nearest neighbours.

Table 2. AUC with 95% confidence intervals for each prediction model's validation and external test dataset

Outcome

OS
     Single model
     Integrated model
     TNM based model
Recurrence
     Single model
     Integrated model
     TNM based model

AUC

0.949
0.923
0.841

0.893
0.918
0.807

95% CI

0.912-0.974
0.913-0.942
0.813-0.878

0.861-0.924
0.903-0.937
0.773-0.842

AUC

0.848
0.917
0.857

0.946
0.877
0.825

95% CI

0.791-0.907
0.887-0.951
0.804-0.917

0.918-0.981
0.838-0.919
0.764-0.887

Validation set External test set

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=227
https://www.biosciencetrends.com/action/getSupplementalData.php?ID=227
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demonstrated benefits for patients (Supplemental 
Figure S8, https://www.biosciencetrends.com/action/
getSupplementalData.php?ID=227). In cases of 
confirmed hepatolithiasis without vascular invasion on 

imaging, AR was recommended for 12 (8.5%) patients. 
The procedure for integrating the recommendation model 
is available at https://github.com/haizhili/Prognostic_
Prediction_and_Surgical_Guidance_for_ICC.

Figure 3. The DCA curves for single algorithms with the highest AUC, the ensemble model, and the baseline model in the nested cross-
validation (A-B) and external validation dataset (C-D). (A) The DCA curves for predicting recurrence in the nested cross-validation; (B) The DCA 
curves for predicting overall survival in the nested cross-validation; (C) The DCA curves for predicting recurrence in the external validation dataset; (D) 
The DCA curves for predicting overall survival in the external validation dataset.

Table 3. Survival predictions for treatment according to model recommendations

Model

N-MTLR
     Development Set
     Validation Set
DeepSurv
     Development Set
     Validation Set
Kernel SVM
     Development Set
     Validation Set

Patients receiving 
recommended 

treatment

  980.0 (812.0)
  858.0 (259.0)

815.0 (99.0)
  792.0 (745.0)

  637.0 (709.0)
821.0 (52.0)

HR (95% CI)

  0.333 (0.262, 0.424)
  0.561 (0.357, 0.882)

  0.919 (0.780, 1.251)
0.8602 (0.490, 1.510)

  3.662 (2.000, 6.709)
  1.722 (0.987, 3.005)

p value

< 0.001
   0.011

 0.91
 0.60

   0.053
 0.39

Validation set

Patients not receiving 
recommended 

treatment

567.0 (478.0)
769.0 (666.0)

862.0 (603.0)
701.0 (673.0)

740.0 (694.0)
832.0 (559.0)

HR, IPTW (95% CI)

0.409 (0.316, 0.528)
0.597 (0.386, 0.925)

2.269 (1.590, 3.238)
1.205 (0.605, 2.402)

  6.703 (3.478, 12.918)
2.236 (1.335, 3.746)

p value

< 0.001
   0.021

< 0.001
 0.59

< 0.001
     0.0022

Abbreviations: HR, hazard ratio; IPTW, inverse probability of treatment weighting; IQR, interquartile range; N-MTLR, neural multitask logistic 
regression; OS, overall survival; SVM, Support Vector Machine. HRs are given for the patients who received the recommended treatment 
compared with those who did not.

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=227
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4. Discussion

In the present multicenter study, an incremental analysis 
was conducted. In the first step, multiple machine 
learning algorithms and various dimensionality reduction 
techniques were compared using routine medical data to 
develop and validate predictive models. These models 
can effectively and precisely predict recurrence and OS. 
AR emerged as a variable, consistently appearing in all 
feature selections. It is worth noting that AR is a variable 
with strong correlations with both the recurrence and OS. 
Furthermore, considering the importance of explaining 
medical decisions to patients, the models with the highest 
AUC for each feature selection were interpreted. These 
interpretations consistently highlighted the risk-reducing 
effects of AR on both recurrence and mortality, reflecting 
its overall benefit in the population. However, it should 
be indicated that the model interpretation focuses on 
the overall benefit of AR in the population but fails to 

analyze the advantages of NAR, which remains valuable 
in real-world clinical practice (22,23). Therefore, in 
the second step, surgical modality recommendation 
models were developed for both AR and NAR, including 
deep learning techniques, to enable individual-level 
predictions. The findings revealed that the majority of 
patients were suitable candidates for AR. Meanwhile, it 
was found that individuals who could be ideal candidates 
for NAR were also considered suitable candidates 
for AR. This refinement in population characteristics 
provides valuable insights for clinical practice.
	 Accurate prediction of postoperative recurrence and 
survival among ICC patients holds critical importance 
(24,25). Although AR has demonstrated improved 
outcomes in HCC, revealing its benefits in ICC requires 
further investigations (10,11). Conventional treatment 
decisions typically encounter some shortcomings, 
including poor personalization, and dependence on 
physician preference and group-level data (12-14). To 

Figure 4. Results for (A-B) N-MLTR, (C-D) 
DeepSurv, and (E-F) Kernel SVM models. 
(A) The Kaplan-Meier curves for the N-MLTR 
model in the training dataset; (B) The Kaplan-
Meier curves for the N-MLTR model in the 
validation dataset; (C) The Kaplan-Meier 
curves for the DeepSurv model in the training 
dataset; (D) The Kaplan-Meier curves for the 
DeepSurv model in the validation dataset; (E) 
The Kaplan-Meier curves for the Kernel SVM 
model in the training dataset; (F) The Kaplan-
Meier curves for the Kernel SVM model in the 
validation dataset.
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resolve these shortcomings and accurately predict ICC 
recurrence and survival, numerous predictive models 
using routine clinical data have been developed. Notably, 
a model based on the N-MTLR model was introduced, 
providing personalized surgical recommendations. This 
advancement benefits patients and assists physicians in 
making treatment decisions, thereby improving ICC care. 
The AUC values of various machine learning models for 
predicting recurrence and OS remain consistent across 
combined training-validation and external validation 
datasets. Minor performance variations were observed 
in OS models during cross-validation and validation 
on the external validation datasets. These variations 
were especially more pronounced through recursive 
feature selection. However, these models consistently 
outperformed the TNM-based prognostic model. An 
additional advantage of the developed models lies 
in the use of integrated modeling. Integrated models 
can enhance the final predictive performance beyond 
individual predictive models. This enhancement is 
achieved by combining diverse predictive models 
that have been trained using distinct architectures and 
hyperparameters. The integration of individual classifiers 
in a parallel manner increased consistency across various 
datasets. Notably, integrated models are not sensitive to 
the challenges imposed by the "curse of dimensionality", 
where the predictive or discriminative efficacy of a 
model rapidly declines as the data dimensionality 
increases (26-28). It is worth noting that classical 
models were employed in the present study to predict 
recurrence, which can provide clear explanations for 
their predictions. In the medical field, model explanation 
facilitates understanding reasons for making particular 
decisions.
	 This article employs several classical feature selection 
methods such as annealing, recursive feature elimination, 
optimal subset, and correlation coefficient to select 
variables. These methods are used to determine variables 
from different perspectives, which can improve the 
accuracy and generalization ability of prognostic models 
and reduce overfitting (29). Moreover, AR was screened 
out in different feature selection methods, indicating 
that it is statistically significant. Meanwhile, the model 
interpretation showed that AR affects the survival of 
patients with ICC. Therefore, several variables were 
used after removing intraoperative and postoperative 
variables, most often screened out by feature engineering 
as inputs to the surgery recommendation model.
	 In the model interpretation, it was observed that AR 
and the absence of hepatolithiasis and vascular invasion 
may have positive effects on the prognosis of ICC 
patients. However, other variables such as BMI may 
also affect the outcome differently, suggesting that the 
effect of the same variable on the result is not unique 
across models (22,23). Accordingly, it was inferred that 
AR does not benefit all patients and an individual-level 
analysis of individuals who were recommended AR to 

gain a deeper understanding of its applicability.
	 In this study, the surgical recommendation model 
based on the N-MTLR model indicated that 493 patients 
(72.5%) might be suitable candidates for AR. Unlike 
previous population-based studies that relied on a 
single standard, the proposed model comprehensively 
considered multiple crucial preoperative variables, 
providing more detailed suggestions for individualized 
decision-making. Overall, AR demonstrated significant 
advantages in terms of recurrence and survival rates for 
most patients, particularly for those with larger tumors 
and without liver dysfunction, making it the more 
appropriate surgical option. However, the model also 
showed that non-anatomic resection (NAR) might be 
a better option for certain patient groups. NAR offers 
advantages such as being less invasive, preserving 
more liver tissue, and promoting faster postoperative 
recovery. Specifically, for patients with smaller tumors, 
NAR and AR showed minimal differences in recurrence 
and survival rates, and NAR could reduce unnecessary 
liver tissue removal, preserving more liver function. 
Additionally, NAR proved beneficial for patients with 
limited liver function (e.g., those with cirrhosis or 
other chronic liver diseases), significantly reducing the 
risk of postoperative liver failure while maintaining 
a high survival rate. Among 42 patients (13.0%) with 
vascular invasion detected through imaging, NAR may 
also be the more appropriate choice. It should be noted 
that hepatolithiasis is classified as a poor prognostic 
factor for ICC, though further studies are needed to 
determine the best surgical approach for ICC patients 
with hepatolithiasis. In clinical practice, AR is typically 
used to resect biliary lesions associated with stones. 
However, the study showed that 46.2% of ICC patients 
with hepatolithiasis (171 patients) might be more suitable 
candidates for NAR, highlighting the importance of 
individualized treatment decisions.
	 The current approach to clinical decision-making 
often relies on physician preference and group-level 
evidence-based clinical practices to advise patients. 
However, this method of decision-making may not 
always offer the most suitable treatment options for 
individuals and may not effectively incorporate the 
unique characteristics of each patient. However, 
clinicians can employ various algorithms to provide 
individualized treatment recommendations for patients 
(16,30,31). Researchers typically use clinical data to 
investigate the benefits of AR and NAR. For instance, 
investigations reveal that patients with ICC combined 
with hepatolithiasis benefit more from AR than NAR 
(32). In the developed model, only 12 patients (8.5%) 
with hepatolithiasis and no vascular invasion were 
considered suitable candidates for AR. In contrast to 
conventional machine learning research that primarily 
focuses on predicting prognosis, this article focuses 
on developing a personalized surgical modality 
recommendation algorithm. This algorithm not only 
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enhanced patient outcomes but also can be encapsulated 
in a compact executable file on computers. This 
feature simplifies its clinical application for healthcare 
providers. The proposed recommendation model used 
routine clinical data, facilitating its application and 
disseminating the research. Meanwhile, instead of 
traditional nomogram scores, the executable file directly 
provides an appropriate surgical approach for the patient, 
which makes the output more concise and easier to use.
	 In addition to remarkable advantages, this study 
also has some shortcomings. First, the data used in 
this study were retrospective, potentially introducing 
regression bias. The interpolation method used to address 
missing data may affect the integrity of the clinical data, 
emphasizing the need for future international prospective 
clinical trials to validate these findings. Secondly, the 
data used in this article did not incorporate information 
from radiomics. As a result, more advanced imaging-
based models may outperform the proposed model. 
However, this model utilized routine preoperative 
and postoperative examination results as input data, 
which effectively minimized the additional time and 
costs typically associated with data preparation and 
processing. This approach also simplifies replication 
in primary care hospitals. Finally, while the absence of 
specific data regarding postoperative adjuvant treatments 
in the raw data might affect the results, it is important 
to note that more than 99% of the patients in this study 
received standard postoperative adjuvant chemotherapy. 
The high consistency of adjuvant therapy within the 
patient population significantly reduced the potential 
impact of such treatments on the comparison between 
surgical approaches (AR and NAR). This consistency 
enhanced the model's applicability and reliability in this 
standardized treatment population. The present study 
provides guidance for developing models focusing on 
surgical procedure data.
	 In conclusion, this article compares various machine 
learning algorithms and feature selection methods to 
develop two predictive models for recurrence and OS 
following radical resection in ICC patients. The results 
demonstrate that the developed model outperforms 
conventional approaches. Additionally, an advanced 
preoperative surgical recommendation system based 
on clinical data was introduced. This model enhances 
patient-centered decision-making and suggests 
personalized treatments. The recommended surgical 
approach exhibited significant improvements in patient 
prognosis. This study offers fresh insights into the 
clinical application of surgical procedures for ICC, 
emphasizing the potential for more effective treatment 
strategies.
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